Допустим, вы двигаетесь на велосипеде, и вдруг кто-то толкает вас сбоку. Чтобы быстро восстановить равновесие и избежать падения, вы повернете руль велосипеда в направлении толчка. Велосипедисты делают это рефлекторно, но удивительно, что велосипед может выполнить это действие самостоятельно. Современные велосипеды могут самостоятельно удерживать равновесие даже при движении без управления. Посмотрим, как этот эффект можно смоделировать в COMSOL Multiphysics.

Что мы знаем о самобалансировании велосипедов

Современный велосипед не очень сильно отличается от безопасного велосипеда — одной из первых конструкций, появившейся в 80-х годах XIX века. По прошествии более ста лет ученые все еще пытаются выяснить, за счет каких эффектов велосипед становится самобалансируемым. Другими словами, как неуправлемый велосипед сохраняет равновесие в вертикальном положении? Описанию движения велосипеда с помощью аналитических уравнений посвящено множество опубликованных работ. Одной из первых важных публикаций по этой теме была статья Фрэнсиса Уиппла, в которой он получил общие нелинейные уравнения динамики велосипеда, управляемого велосипедистом без использования рук.

Принято считать, что устойчивость велосипеда обеспечивается двумя факторами — гироскопической прецессией переднего колеса и стабилизирующим действием продольного наклона оси поворота колеса. Совсем недавно команда исследователей из Делфта и Корнелла (см. ) опубликовала всеобъемлющий обзор линеаризованных уравнений движения для модели велосипеда Уиппла. Они использовали свои результаты для демонстрации самобалансирующегося велосипеда. Их исследование показывает, что этому явлению нельзя дать простое объяснение. Сочетание факторов, в том числе гироскопического и стабилизирующего эффектов, геометрии велосипеда, скорости и распределения массы позволяет неуправляемому велосипеду сохранять вертикальное положение.

Вдохновившись этой работой, мы построили динамическую модель многотельной системы, чтобы продемонстрировать самобалансирующееся движение велосипеда, управляемого велосипедистом без помощи рук.

Положение велосипеда в разные моменты времени.

Многотельная модель велосипеда

Чтобы обеспечить чистое качение колес и ограничить их проскальзывание в трех направлениях, нам нужны три граничных условия.


Модель колеса с отображением направлений, в которых ограничены перемещения.

Используются следующие ограничения: Отсутствие проскальзывания в прямом направлении:

{\frac{d\bold{u}}{dt}.\bold{e}_{2}=r\frac{d\bold{\theta}_s}{dt}}

Отсутствие проскальзывания в поперечном направлении:

\frac{d\bold{u}}{dt}.\bold{e}_{3}=r\frac{d\bold{\theta}_{l}}{dt}

Отсутствие проскальзывания перпендикулярно поверхности контакта с землей:

\frac{d\bold{u}}{dt}.\bold{e}_{4}=0

где \bold{e}_{2} , \bold{e}_{3} , and \bold{e}_{4} — мгновенное направление (наклонная ось), поперечное направление (ось вращения) и нормаль к поверхности контакта (\bold{e}_{4}=\bold{e}_{2} \times\bold{e}_{3}) , соответственно;

\frac{d\bold{u}}{dt} — поступательная скорость движения; r — радиус колеса; \frac{d\bold{\theta}_{s}}{dt} — угловая скорость вращения; \frac{d\bold{\theta}_{l}}{dt} — угловая наклонная скорость.

Поскольку применить указанные граничные условия к скорости невозможно, они дискретизируются во времени и накладываются следующим образом:

(\bold{u}-\bold{u}_{p}).\bold{e}_{2}=r(\bold{\theta}_{s}-\bold{\theta}_{sp})

(\bold{u}-\bold{u}_{p}).\bold{e}_{3}=r(\bold{\theta}_{l}-\bold{\theta}_{lp})

(\bold{u}-\bold{u}_{p}).\bold{e}_{4}=0

где \bold{u}_{p} , \bold{\theta}_{sp} и\bold{\theta}_{lp} — это вектор смещения, угол вращения и наклона в предыдущий момент времени, соответственно.

В дискретных граничных условиях, обеспечивающих отсутствие проскальзывания, используется результат расчета положения колеса на предыдущем шаге по времени. Положение жесткого тела, вращение и мгновенные положения осей на предыдущем шаге по времени сохраняются с помощью глобальных уравнений и узла Previous Solution в нестационарном решателе.

Моделирование движения самобалансирующегося велосипеда

Для анализа мы выбрали велосипед, угол наклона руля которого составляет 18°. Начальное значение скорости велосипеда составляет 4.6 м/с. Через 1 секунду после начала движения на велосипед в течение очень короткого периода времени воздействует сила 500 Н. Под действием силы велосипед отклоняется от прямолинейной траектории движения в заданном направлении.

В течении первой секунды велосипед движется вперед вдоль первоначально заданного направления с постоянной скоростью. Затем боковое усилие вызывает отклонение. Отметим, что велосипедист не держит руки на руле и не может управлять балансом велосипеда. Что происходит дальше? Мы можем заметить, что как только велосипед начинает наклоняться, руль поворачивается в направлении падения. Корректировка положения руля при падении приводит к восстановлению равновесия велосипеда.

Велосипед продолжает двигаться вперед, и в процессе движения начинает наклоняться в обратную сторону. Этот наклон меньше по величине, а движение руля точно следует за наклоном с небольшим отставанием. Такое колебание вправо-влево продолжается и в конечном итоге затухает. Велосипед движется вперед в строго вертикальном положении и слегка увеличивает скорость. Колебания руля, углы поворота и угловая скорость постепенно снижаются и затухают.

Движение велосипеда на ровной поверхности при отклонении от прямолинейного движения. Стрелка показывает наклон велосипеда.

Результаты расчета углов наклона и поворота руля (слева) и относительная угловая скорость (справа) велосипеда.

Проведение анализа устойчивости

Таким образом, мы узнали, что велосипед может самобалансироваться. Исследование показало, что невозможно выделить какой-то один параметр, определяющий устойчивость велосипеда. Конструкция велосипеда, распределение массы и скорость движения — все эти факторы влияют на устойчивость. Чтобы лучше понять это явление, мы провели дополнительный анализ для изучения влияния двух параметров — начальной скорости и наклона рулевой оси. Мы использовали описанную выше модель велосипеда с углом наклона оси руля 18° и начальной скоростью 4.6 м/с в качестве исходной конфигурации и провели параметрический анализ влияния этих двух факторов.

Различные значения начальной скорости

Велосипед не может оставаться в строго вертикальном положении, когда стоит на месте. Мы изменяли скорость движения от 2.6 м/с до 6.6 м/с с шагом 1 м/с, чтобы оценить влияние этого параметра. В диапазоне 2.6–3.6 м/с велосипед наклоняется слишком сильно и неустойчив. На скорости 5.6 м/с скорость наклона стремится к нулю, но сам угол наклона приобретает ненулевое значение. Хотя данная конфигурация устойчива, велосипед будет двигаться по кругу с небольшим наклоном. На 6.6 м/с наклон и угол поворота руля увеличиваются со временем, делая движение неустойчивым.

Неустойчивое Устойчивое Неустойчивое
2.6 м/с 3.6 м/с 4.6 м/с 5.6 м/с 6.6 м/с

Устойчивый случай соответствует скорости 5.6 м/с (слева), а неустойчивый — скорости 6.6 м/с (справа).

Угол поворота руля

Узел рулевого управления очень важен для самобалансировки велосипеда. Если велосипедом невозможно управлять (например, если руль заклинило), то велосипед не сможет компенсировать наклон, поэтому он в итоге упадет. В этой связи, поворот оси руля, который контролирует уход вилки, также влияет на самобалансировку велосипеда.

Чтобы проанализировать влияние поворота оси руля на устойчивость велосипеда, мы изменяли углы поворота руля от 15° до 21° с шагом 1°. При угле в 15° наклон и угол поворота руля увеличиваются со временем, что делает данную конфигурацию неустойчивой. Велосипед устойчив в диапазоне от 16° до 19° и неустойчив для больших углов. При значениях поворота больше 19°, наклон и угол поворота колеблются, и эти осцилляции со временем возрастают, что приводит к потере устойчивости.

В этой публикации мы рассказали, как смоделировать движение неуправляемого самобалансирующегося велосипеда с помощью модуля Динамика многотельных систем (Multibody Dynamics) в COMSOL Multiphysics. Мы продемонстрировали, как реализовать ограничения на проскальзывание на жестком колесе через уравнения, а затем объединили эти ограничения с многотельной моделью велосипеда. Затем мы проанализировали влияние начальной скорости и поворота оси на устойчивость велосипеда. Оценив эти параметры, мы увидели, что велосипед может сохранять устойчивость в одной конфигурации и терять ее в другой.

Самобалансировка велосипеда является следствием целого ряда факторов. С помощью нашего анализа и в соответствии с предыдущими исследованиями мы продемонстрировали, что устойчивость велосипеда связана с его способностью "подруливать" в направлении наклона.

Движение автомобиля рассматривается как плоскопараллельное движение твердого тела по горизонтальной поверхности (рис. 1). В общем случае движение автомобиля описывается следующей системой дифференциальных уравнений:

где - вектор ускорения центра масс автомобиля; m - масса автомобиля; fi - вектор силы сопротивления прямолинейному движению i-го колеса; i - вектор взаимодействия с грунтом i-го колеса; w - вектор силы сопротивления воздуха; J z - момент инерции автомобиля относительно оси z; M nki - момент сопротивления повороту i-го колеса.

Ускорение определяется как

где dV/dt - относительная производная скорости центра масс автомобиля. Проекции скоростей в координатах x`, y`, z`:

Учитывая, что:

можно записать следующую систему уравнений:

Данную систему уравнений решим с помощью пакета DEE (Differential Equation Editor) входящего в состав Simulink. Для этого записываем уравнения в нормальной форме Коши и настраиваем входные данные:

Рисунок 6. Решатель систем дифференциальных уравнений

Входными данными будут являться выходы с предыдущих блоков. Общий вид модели представлен на следующем рисунке:


Рисунок 7. Модель транспортного средства с колесной формулой 4х4

Результаты моделирования представим графически:

Рисунок 8. Траектория движения автомобиля

Результаты моделирования представляют собой траекторию движения автомобиля в форме окружности, что говорит об адекватности данной модели. Данная работа может послужить фундаментом для дальнейших перспективных исследований в области разработки систем автоматического управления движением автомобиля, в том числе систем активной безопасности.

Цели урока:

Обучающие (конечные результаты урока):

Знание: знать, что представляют собой процесс движения, как его организовать в Qbasic.

Понимание: уметь привести примеры движения, которые можно смоделировать на ЭВМ.

Применение: уметь составить программу, реализующую движение по заданной траектории, проверить ее на ЭВМ.

Анализ: уметь определить результаты работы строк из программы, выявить ошибки.

Синтез: уметь создать моделирующую программу с использованием движения.

Сравнительная оценка: сравнить между собой программы с использованием движения в графическом и текстовом режимах.

Развивающие: развитие общеучебных умений и навыков, воображения и фантазии.

Воспитательные: воспитание ученика самостоятельной, организованной личностью.

Оборудование:

компьютерный класс, язык программирования Qbasic, презентация по теме урока, проектор к ЭВМ, экран, карты урока, карточки с правильными ответами для самоконтроля, демонстрационные программы.

Ход урока:

Наш урок посвящен практическому применению операторов организации циклов. С их помощью мы научимся моделировать на компьютере процесс движения различных объектов.

Моделирование - это форма отражения действительности, а так как мы будем описывать движение на языке программирования, то полученные модели называют информационными.

Говоря о движении, сразу вспоминается крылатое выражение «Движение – это жизнь». И действительно, кто не хотел, чтобы неподвижная картинка на экране «ожила». Например, на ней пошел бы «настоящий» снег, неподвижный кораблик поплыл, а стрелки часов начали бы свой ход. Этому «волшебству» мы можем научиться сегодня на уроке.

Итак, вы узнаете,

Как смоделировать процесс движения по прямой;

Рассмотрите примеры программ;

Научитесь «оживлять» объекты;

Проанализируете готовые программы;

Сравните процесс движения в графическом и текстовом режимах.

Что такое движение? С физической точки зрения движение – это изменение положения тела с течением времени. Для начала мы будем моделировать движение простых объектов– точки, окружности, линий. Вспомним их форматы записи.

У каждого объекта выбирается точка с координатой (x,y), положение которой будет меняться. Если для окружности – это координата центра, то у линии (прямоугольника) - это только одна из точек.

Если мы хотим перемещать символы по экрану, то нам потребуются операторы: LOCATE для выбора положения символа и PRINT для его печати.

Каковы правила моделирования движения?

1) Выберем координаты.

2) Изобразим объект.

3) Сделаем паузу.

4) Сотрем объект (закрашивая его цветом фона, или на месте удаляемых символов будем печатать пробелы).

5) Выберем следующие координаты.

Хотелось бы обратиться к еще одному высказыванию О. Холмз: «В нашей жизни важно не столько положение, в котором мы находимся, сколько направление, в котором мы движемся». Помимо глубокого философского смысла, оно имеет самое прямое отношение к моделированию движения.

Для перемещения очень важно, по какой траектории будет двигаться объект: по прямой (в горизонтальном или вертикальном направлениям), или графикам различных функций. Сегодня мы уделим внимание только движению по прямой (в горизонтальном и вертикальном направлении).

Тренинг 1. Движение по горизонтали.

Определите по приведенным траекториям следующие данные и занесите в таблицу:

номер графика

координата X меняется

координата Y

Тренинг 2. Движение по вертикали.

Определите по приведенным траекториям следующие данные и занесите в таблицу:

номер графика

координата X

координата Y меняется

Составьте программу, моделирующую движение точки по траектории графика №_____.

Тренинг 3.

Определите по приведенным строкам программы направление, в котором движется объект (вверх, вниз, вправо или влево по экрану), обозначьте направление стрелками:

1) FOR Y= 5 TO 100 STEP 10 _____________________________

2) FOR X= 1 TO 400 STEP 1 _____________________________

3) FOR X= 300 TO 40 STEP -10 _____________________________

4) FOR Y= 200 TO 10 STEP -10 _____________________________

5) FOR Y= 105 TO 3 STEP 10 _____________________________

6) FOR X= а TO a-100 STEP -10_____________________________

Тренинг 4.

Определите результат выполнения программы:

CLS
SCREEN 12
FOR Y= 5 TO 25 STEP 1
X=10
LOCATE Y,X
PRINT “ *”
SLEEP 1
LOCATE Y,X
PRINT “ ”
NEXT Y
FOR Х= 10 TO 60 STEP 1
Y= 25
LOCATE Y,X
PRINT “ *”
SLEEP 1
LOCATE Y,X
PRINT “ ”
NEXT Х
END

Упражнения

  1. В предложенной программе внести следующие изменения:
    1. чтобы точка двигалась по заданной траектории из тренинга 1;
    2. чтобы точка двигалась по заданной траектории из тренинга 2;
    3. чтобы двигалась не точка, а окружность (радиус = 30);
    4. чтобы окружность двигалась в обратном направлении;
    5. чтобы двигался закрашенный прямоугольник со сторонами 50 и 30.

Подсказка. Форматы записи:

окружность CIRCLE (X, Y), R, C

закрашенный прямоугольник LINE (X,Y) – (X1,Y1), C, BF

Составить программу для моделирования движения символов по экрану, составляющих любое из предложенных слов:

Домашнее задание:

1) Смоделируйте на компьютере сюжет русской народной сказки «Колобок». Изобразите дорогу-лабиринт и колобка, который ее успешно преодолевает.

2) Действие одного из компьютерных вирусов на экране проявлялось тем, что напечатанные символы «ссыпались» вниз. Составьте программу, которая моделировала бы данный процесс.

3) Видоизмените программу, так, чтобы пользователь печатал слово в произвольном месте экрана, но его «постигала бы та же участь».

Подведение итогов урока.

Ответьте на вопросы:

1) Как организуется движение по горизонтальной траектории?

2) Как смоделировать движение по вертикали?

3) В чем отличие моделирования движения графических объектов и текстовых символов?

4) Какие процессы можно смоделировать, пользуясь полученными на уроке знаниями?

Моделирование движения заключается в искусственном воспроизведении процесса движения физическими или математическими методами, например, с помощью ЭВМ.

В качестве примеров физических методов моделирования могут быть названы исследования движения на различных макетах элементов дороги или полигонные испытания, где создаются искусственные условия, имитирующие реальное движение транспортных средств. Простейшим примером физического моделирования может служить распространенный метод проверки возможностей маневрирования и постановки на стоянку различных транспортных средств с помощью их моделей на заданной площади, изображенной в уменьшенном масштабе.

Наибольшее значение имеет математическое моделирование (вычислительный эксперимент), основывающееся на математическом описании транспортных потоков. Благодаря быстродействию ЭВМ, на которых осуществляется такое моделирование, удается в минимальное время провести исследование влияния многочисленных факторов на изменения различных параметров и их сочетания и получить данные для оптимизации управления движением (например, для регулирования на пересечении), которые невозможно обеспечить натурными исследованиями.

В основу вычислительного эксперимента с применением ЭВМ легло понятие модели объекта, то есть математическое описание, соответствующее данной конкретной системе и отражающее с требуемой точностью поведение ее в реальных условиях. Вычислительный эксперимент дешевле, проще натурного, легко управляем. Он открывает путь к решению больших комплексных проблем и оптимальному расчету транспортных систем, научно обоснованному планированию исследований. Недостаток вычислительного эксперимента состоит в том, что применимость его результатов ограничена рамками принятой математической модели, построенной на основе закономерностей, выявленных с помощью натурного эксперимента.

Изучение результатов натурного эксперимента позволяет получить функциональные соотношения и теоретические распределения, исходя из которых строится математическая модель. Математическое моделирование в вычислительном эксперименте целесообразно разделить на аналитическое и имитационное. Процессы функционирования систем при аналитическом моделировании описываются с помощью некоторых функциональных отношений или логических условий. Учитывая сложность процесса дорожного движения, для упрощения приходится прибегать к серьезным ограничениям. Однако, несмотря на это, аналитическая модель позволяет находить приближенное решение задачи. При невозможности получения решения аналитическим путем модель может исследоваться с применением численных методов, позволяющих находить результаты при конкретных начальных данных. В этом случае целесообразно использовать имитационное моделирование, подразумевающее применение ЭВМ и алгоритмическое описание процесса вместо аналитического.

Широкое применение имитационное моделирование может найти для оценки качества организации движения, а также при решении различных задач, связанных с проектированием автоматизированных систем управления дорожным движением, например, при решении вопроса об оптимальной структуре системы. К числу недостатков имитационного моделирования относят частный характер получаемых решений, а также большие затраты машинного времени для получения статически достоверного решения.

Следует отметить, что в настоящее время область моделирования транспортных потоков находится в стадии формирования. Различные аспекты моделирования исследуются в МАДИ, ВНИИБД, НИИАТ и других организациях.

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Курсовая работа

Дисциплина «Математическое моделирование»

Тема: «Моделирование движения парашютиста»


Введение

1. Свободное падение тела с учетом сопротивления среды

2. Формулировка математической модели и ее описание.

3. Описание программы исследования с помощью пакета Simulink

4. Решение задачи программным путем

Список использованных источников

Введение

Формулировка проблемы :

Катапульта выбрасывает манекен человека с высоты 5000 метров. Парашют не раскрывается, манекен падает на землю. Оценить скорость падения в момент удара о землю. Оценить время достижения манекеном предельной скорости. Оценить высоту, на которой скорость достигла предельного значения. Построить соответствующие графики, провести анализ и сделать выводы.

Цель работы :

Научиться составлять математическую модель, решать дифференциальные уравнения программными средствами (используется язык технических вычислений MatLAB 7.0, пакет расширения Simulink) и анализировать полученные данные о математической модели.

1. Свободное падение тела с учетом сопротивления среды

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту, относительно несложную, задачу нельзя решить средствами “школьной” физики: таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение, где определяется свойствами среды и формой тела. Например, для шарика - это формула Стокса, где - динамическая вязкость среды, r - радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм = 0,0182 H.c.м-2 для воды 1,002 H.c.м-2 , для глицерина 1480 H.c.м-2.

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (в движение станет равномерным).

(1)

Пусть r= 0,1 м, = 0,8 кг/м (дерево). При падении в воздухе м/с, в воде 17 м/с, в глицерине 0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: . Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если , то вкладом можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды и зависит от формы тела. Обычно представляют k2 = 0,5сS, где с - коэффициент лобового сопротивления - безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис.1.

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается. Для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичной зависимости силы сопротивления от скорости.

для шарика

(3)

Рис 1 . Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму

Примем r = 0,1 м, =0,8.103 кг/м3 (дерево). Тогда для движения в воздухе (= 1,29 кг/м3) получаем 18 м/с, в воде(= 1.103 кг/м3) 0,65 м/с, в глицерине (= 1,26.103 кг/м3) 0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения - уравнение второго закона Ньютона с учетом двух сил, действующих на тело: силы тяжести и силы сопротивления среды:

(4)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

(5)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7) заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента, , и соответствующую установившуюся скорость можно найти из условия =0, решая не дифференциальное, а квадратное уравнение. Имеем

(6)

(второй - отрицательный - корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от до . Как и по какому закону – это можно узнать, лишь решив дифференциальное уравнение (7).

Однако даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. И хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны. Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций – а как найти закон изменения во времени перемещения? Формальный ответ прост:

(7)

но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно обычна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе. Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т. е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать). Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений. Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс - а именно это есть цель моделирования.

В достижении этой цели компьютер - незаменимый помощник. Независимо от того, какой будет процедура получения решения - аналитической или численной, - задумаемся об удобных способах представления результатов. Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия. Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е. далеко не все значения и , найденные компьютером, следует записывать в результирующую таблицу (табл. 2).

Таблица 2

Зависимость перемещения и скорости падения от времени (от 0 до 15 с)

t(c) S(m) (м/с) t(c) S(m) (м/с)

Кроме таблицы необходимы графики зависимостей и ; по ним хорошо видно, как меняются со временем скорость и перемещение, т.е. приходит качественное понимание процесса.

Еще один элемент наглядности может внести изображение падающего тела через равные промежутки времени. Ясно, что при стабилизации скорости расстояния между изображениями станут равными. Можно прибегнуть и к цветовой раскраске - приему научной графики, описанному выше.

Наконец, можно запрограммировать звуковые сигналы, которые подаются через каждый фиксированный отрезок пути, пройденный телом - скажем, через каждый метр или каждые 100 метров - смотря по конкретным обстоятельствам. Надо выбрать интервал так, чтобы вначале сигналы были редкими, а потом, с ростом скорости, сигнал слышался все чаще, пока промежутки не сравняются. Таким образом, восприятию помогают элементы мультимедиа. Поле для фантазии здесь велико.

Приведем конкретный пример решения задачи о свободно падающем теле. Герой знаменитого фильма “Небесный тихоход” майор Булочкин, упав с высоты 6000 м в реку без парашюта, не только остался жив, но даже смог снова летать. Попробуем понять, возможно, ли такое на самом деле или же подобное случается только в кино. Учитывая сказанное выше о математическом характере задачи, выберем путь численного моделирования. Итак, математическая модель выражается системой дифференциальных уравнений.

(8)

Разумеется, это не только абстрактное выражение обсуждаемой физической ситуации, но и сильно идеализированное, т.е. ранжирование факторов перед построением математической модели произведено. Обсудим, нельзя ли произвести дополнительное ранжирование уже в рамках самой математической модели с учетом конкретно решаемой задачи, а именно - будет ли влиять на полет парашютиста линейная часть силы сопротивления и стоит ли ее учитывать при моделировании.

Так как постановка задачи должна быть конкретной, мы примем соглашение, каким образом падает человек. Он опытный летчик и наверняка совершал раньше прыжки с парашютом, поэтому, стремясь уменьшить скорость, он падает не “солдатиком”, а лицом вниз, “лежа”, раскинув руки в стороны. Рост человека возьмем средний - 1,7 м, а полуобхват грудной клетки выберем в качестве характерного расстояния - это приблизительно 0,4 м. для оценки порядка величины линейной составляющей силы сопротивления воспользуемся формулой Стокса. Для оценки квадратичной составляющей силы сопротивления мы должны определиться со значениями коэффициента лобового сопротивления и площадью тела. Выберем в качестве коэффициента число с=1,2 как среднее между коэффициентами для диска и для полусферы (выбор дня качественной оценки правдоподобен). Оценим площадь: S = 1,7 ∙ 0,4 = 0,7(м2).

В физических задачах на движение фундаментальную роль играет второй закон Ньютона. Он гласит, что ускорение, с которым движется тело, прямо пропорционально действующей на него силе (если их несколько, то равнодействующей, т.е. векторной сумме сил) и обратно пропорционально его массе:

Так для свободно падающего тела под действием только собственной массы закон Ньютона примет вид:

Или в дифференциальном виде:

Взяв интеграл от этого выражения, получим зависимость скорости от времени:

Если в начальный момент V0 = 0, тогда .

.

Выясним, при какой скорости сравняются линейная и квадратичная составляющие силы сопротивления. Обозначим эту скорость Тогда

Ясно, что практически с самого начала скорость падения майора Булочкина гораздо больше, и поэтому линейной составляющей силы сопротивления можно пренебречь, оставив лишь квадратичную составляющую.

После оценки всех параметров можно приступить к численному решению задачи. При этом следует воспользоваться любым из известных методов интегрирования систем обыкновенных дифференциальных уравнений: методом Эйлера, одним из методов группы Рунге - Кутта или одним из многочисленных неявных методов. Разумеется, у них разная устойчивость, эффективность и т.д. - эти сугубо математические проблемы здесь не обсуждаются.

Вычисления производятся до тех пор, пока не опустится на воду. Примерно через 15 с после начала полета скорость становится постоянной и остается такой до приземления. Отметим, что в рассматриваемой ситуации сопротивление воздуха радикально меняет характер движения. При отказе от его учета график скорости, изображенный на рисунке 2, заменился бы касательной к нему в начале координат.

Рис. 2. График зависимости скорости падения от времени

2. Формулировка математической модели и ее описание

парашютист падение сопротивление математическая модель

При построении математической модели необходимо соблюдение следующих условий:

Манекен массой 50 кг соответственно падают в воздухе с плотностью 1,225 кг/м3;

На движение влияют только силы линейного и квадратичного сопротивления;

Площадь сечения тела S=0.4 м2;

Тогда для свободно падающего тела под действием сил сопротивления закон Ньютона примет вид:

,

где a – ускорение тела, м/с2,

m – его масса, кг,

g – ускорение свободного падения на земле, g = 9,8 м/с2,

v – скорость тела, м/c,

k1 – линейный коэффициент пропорциональности, примем k1 = β = 6πμl (μ – динамическая вязкость среды, для воздуха μ = 0,0182 Н.с.м-2; l – эффективная длина, примем для среднестатистического человека при росте 1,7 м и соответствующем обхвате грудной клетки l = 0,4 м),

k2 – квадратичный коэффициент пропорциональности. K2 = α = С2ρS. В данном случае достоверно можно узнать лишь плотность воздуха, а площадь манекена S и коэффициент лобового сопротивления С2 для него определить сложно, можно воспользоваться полученными экспериментальными данными и принять K2 = α = 0,2.

Тогда получим закон Ньютона в дифференциальном виде:

Тогда можно составить систему дифференциальных уравнений:


Математическая модель при падении тела в гравитационном поле с учетом сопротивления воздуха выражается системой из двух дифференциальных уравнений первого порядка.

3. Описание программы исследования с помощью пакета Simulink

Для имитационного моделирования движения парашютиста в системе MATLAB используем элементы пакета расширения Simulink. Для задания величин начальной высоты - H_n, конечной высоты - H_ k, числа - pi, μ – динамическая вязкость среды - my, обхват - R, массе манекена m, коэффициент лобового сопротивления - c, плотность воздуха - ro, площадь сечения тела - S, ускорение свободного падения - g, начальная скорость - V_n используем элемент Constantнаходящийся в Simulink/Sources(рисунок 3).

Рисунок 3. Элемент Constant


Для операции умножения используем блок Product, находящийся в Simulink/MathOperations/Product (рисунок 4).

Рисунок. 4

Для ввода k1 – линейного коэффициента пропорциональности и k2 – квадратичного коэффициента пропорциональности используем элемент Gain, находящийся в Simulink/MathOperations/Gain(Рисунок. 5.)

Рисунок. 5

Для интегрирования – элемент Integrator. Находящийсяв Simulink/Continuous/Integrator. Рисунок. 6.

Рисунок. 6

Для вывода информации используем элементы Display и Scope. Находящиеся в Simulink/Sinks. (Рисунок. 7)


Рисунок. 7

Математическая модель для исследования с использованием вышеперечисленных элементов, описывающая последовательный колебательный контур приведена на рисунке 8.

Рисунок. 8

Программа исследований

1. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 50кг.


Рисунок 9

Из графиков видно, что при расчете падения парашютиста массой 50 кг, следующие данные: максимальная скорость равна 41,6 м/с и время равно 18с, и должна достигаться через 800 м падения, т.е. в нашем случае на высоте около 4200 м.


Рисунок. 10

2. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 100кг.


Рисунок 11


Рисунок 12

С массой парашютиста 100 кг.: максимальная скорость равна 58 м/с и время равно 15с, и должна достигаться через 500 м падения, т.е. в нашем случае на высоте около 4500 м. (рисунок. 11., рисунок. 12).

Выводы по полученным данным, которые справедливы для манекенов, отличающихся только массой, но с одинаковыми размерами, формой, типом поверхности и другими параметрами, определяющими внешний вид объекта.

Легкий манекен при свободном падении в гравитационном поле с учетом сопротивления среды достигает меньшей предельной скорости, но за меньший промежуток времени и, естественно, при одинаковой начальной высоте – в более низкой точке траектории, чем тяжелый манекен.

Чем тяжелее манекен, тем быстрее он достигнет земли.

4. Решение задачи программным путем

%Функция моделирования движения парашютиста

function dhdt=parashut(t,h)

global k1 k2 g m

% система ДУ первого порядка

dhdt(1,1)= -h(2);

% Моделирование движения парашютиста

% Васильцов С. В.

global h0 g m k1 k2 a

% k1-линейный коэффициент пропорциональности, определяющийся свойствами среды и формой тела. Формула Стокса.

k1=6*0.0182*0.4;

%k2-квадратичный коэффициент пропорциональности, пропорционален площади сечения тела, поперечного по

%отношения к потоку, плотности среды и зависит от формы тела.

k2=0.5*1.2*0.4*1.225

g=9.81; % ускорение свободного падения

m=50; % масса манекена

h0=5000; % высота

Ode45(@parashut,,)

r=find(h(:,1)>=0);

a=g-(k1*-h(:,2)+k2*h(:,2).*h(:,2))/m % вычисляемускорение

% Построение графика зависимости высоты от времени

subplot(3,1,1), plot(t,h(:,1),"LineWidth",1,"Color","r"),grid on;

xlabel("t, c"); ylabel("h(t), m");

title("Графикзависимостивысотыотвремени", "FontName", "Arial","Color","r","FontWeight","bold");

legend("m=50 kg")

% Построение графика зависимости скорости от времени

subplot(3,1,2), plot(t,h(:,2),"LineWidth",1,"Color","b"),grid on;

ylabel("V(t), m/c");

Title("Графикзависимостискоростиотвремени", "FontName", "Arial","Color","b","FontWeight","bold");

legend("m=50 kg")

% Построение графика зависимости ускорения от времени

subplot(3,1,3), plot(t,a,"-","LineWidth",1,"Color","g"),grid on;

text (145, 0,"t, c");

ylabel("a(t), m/c^2");

Title("Графикзависимостиускоренияотвремени", "FontName", "Arial","Color","g","FontWeight","bold");

legend("m=50 kg")


Экранная форма вывода графиков.



1. Вся физика. Е.Н. Изергина. – М.: ООО «Издательство «Олимп», 2001. – 496 с.

2. Касаткин И. Л. Репетитор по физике. Механика. Молекулярная физика. Термодинамика/ Под ред. Т. В. Шкиль. – Ростов Н/Д: изд-во «Феникс», 2000. – 896 с.

3. Компакт-диск «Самоучитель MathLAB». ООО «Мультисофт», Россия, 2005.

4. Методические указания к Курсовой работе: дисциплина Математическое моделирование. Движение тела при учете сопротивления среды. – Минск. РИИТ БНТУ. Кафедра ИТ, 2007. – 4 с.

5. Решение систем дифференциальных уравнений в Matlab. Дубанов А.А. [Электронный ресурс]. – Режим доступа: http://rrc.dgu.ru/res/exponenta/ educat/systemat/dubanov/index.asp.htm;

6. Энциклопедия д.д. Физика. Т. 16. Ч.1. с. 394 – 396. Сопротивление движению и силы трения. А. Гордеев. /Глав. ред. В.А. Володин. – М. Аванта+, 2000. – 448 с.

7. MatlabFunctionReference [Электронный ресурс]. – Режим доступа: http://matlab.nsu.ru/Library/Books/Math/MATLAB/help/techdoc/ref/.