Пояснительная записка

по дисциплине

« Информационные технологии проектирования

радиоэлектронных средств»

Тема: «Использование технологии DFD»

Выполнил: студент гр. 4141 Понкин Д.О.

Руководитель: доцент Колуков В.В.

Дубна, 2012

Введение. 3

Состав диаграмм потоков данных. 3

Построение иерархии диаграмм потоков данных. 6

Пример построение DFD-диаграммы.. 8

Выводы.. 10

Список литературы.. 11

Введение

Диаграммы потоков данных (Data Flow Diagrams - DFD) представляют собой иерархию функциональных процессов, связанных потоками данных . Цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Для построения DFD традиционно используются две различные нотации, соответствующие методам Йордона-ДеМарко и Гейна-Сэрсона. Эти нотации незначительно отличаются друг от друга графическим изображением символов (далее в примерах используется нотация Гейна-Сэрсона).

В соответствии с данным методом модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи потребителю .

Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации.

Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут уровень декомпозиции, на котором детализировать процессы далее не имеет смысла.

Состав диаграмм потоков данных

Основными компонентами диаграмм потоков данных являются:

внешние сущности;

системы и подсистемы;

процессы (работы);

накопители данных;

потоки данных.

Внешняя сущность представляет собой материальный объект или физическое лицо, являющиеся источником или приемником информации, например, заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.

Внешняя сущность обозначается квадратом (рис. 1), расположенным над диаграммой и бросающим на нее тень для того, чтобы можно было выделить этот символ среди других обозначений.

Рис. 1. Графическое изображение внешней сущности

При построении модели сложной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем.

Подсистема (или система) на контекстной диаграмме изображается так, как она представлена на рис. 2.

Рис. 2. Подсистема по работе с физическими лицами

(ГНИ - Государственная налоговая инспекция)

Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями.

Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д.

Процесс на диаграмме потоков данных изображается, как показано на рис. 3.

Рис. 3. Графическое изображение процесса

Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже, например: «Ввести сведения о налогоплательщиках», «Выдать информацию о текущих расходах», «Проверить поступление денег».

Информация в поле физической реализации показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми.

Накопитель данных может быть реализован физически в виде ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных изображается, как показано на рис. 4.

Рис. 4. Графическое изображение накопителя данных

Накопитель данных идентифицируется буквой «D» и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.

Накопитель данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно соответствовать модели данных.

Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.

Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока (рис. 5). Каждый поток данных имеет имя, отражающее его содержание.

Основными компонентами диаграмм потоков данных являются:

Внешние сущности (External Reference);

Системы/подсистемы;

Процессы;

Накопители данных (Data store);

Потоки данных.

Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям — потребителям информации.

Внешняя сущность

Внешняя сущность — это материальный предмет, физическое лицо или другая система, представляющие собой источник и/или приемник информации .

Имя сущности должно содержать существительное , например , "ОС", "Файловая система", "Пользователь", "Внешний накопитель", "Поставщик(и)", "Клиент(ы)", "Склад".

Определение некоторых объектов или систем в качестве внешних сущностей указывает на то, что они находятся за пределами границ проектируемой системы, они не должны участвовать ни в какой обработке .

Поэтому это не могут быть механизмы из модели в нотации IDEF0. Особый случай составляют механизмы модели в нотации IDEF0 такие, как "Пользователь".

Пользователь может быть представлен и как механизм, так как он участвует в процессе обработки посредством ввода данных, выбора пунктов меню и т.п. В этом случае он выступает в роли оператора. И в то же время пользователь является внешней сущностью в модели в нотации DFD, так как он дает данные для обработки, он же и получает результат работы проектируемой системы, в частности ПО.

Внешняя сущность обозначается прямоугольником (рис. 10.1), расположенным как бы "над" диаграммой и бросающим на нее тень, как раз, чтобы показать, что внешняя сущность находится вне контекста моделируемой системы.

Обычно внешние сущности располагают по краям диаграммы . Одна внешняя сущность может быть использована многократно на одной или нескольких диаграммах. Такой прием используют, чтобы не рисовать слишком длинных и запутанных стрелок-связей.

Каждая внешняя сущность идентифицируется буквой "E" и произвольным числом (одним и тем же на разных копиях сущности). Каждой внешней сущности дается текстовое описание .

Примеры сущностей с возможными текстовыми описаниями приведены в табл. 10.1.

Таблица 10.1

Примеры внешних сущностей

Название сущности

Описание

Пользователь

Человек, использующий данную систему (данное ПО)

Операционная система (MS Windows), предоставляет: настройки интерфейса ОС, такие как параметры принтера, размер, стиль, цвет шрифта, цвет фона и т.д.; разрешения на действия с файлом; текущие дату и время

Логические и/или физические диски

Предоставляют (предоставляет) пользователю список файлов и папок, хранящихся на компьютере, а также дают (дает) возможность для записи и хранения новых данных

Файловая система

Внешнее хранилище, позволяющее сохранять в себе произвольную информацию с возможностью последующего ее извлечения

Внешний накопитель

Жесткий диск, дискета, CD-ROM, сетевой диск и т.д.

Система и подсистема

При построении модели сложной системы она представляется в самом общем виде на контекстной диаграмме как единое целое . Затем она декомпозируется на ряд подсистем .

В качестве имени системы, подсистемы используется предложение с подлежащим и соответствующими определениями и дополнениями, например , "Система обработки информации", "Подсистема работы с файлами", "Подсистема работы с изображением", "Подсистема работы с документом", "Подсистема настройки шрифта".

Процесс, действие (или работа)

Процесс (или работа) представляет собой функцию системы, подсистемы. Преобразует входные потоки данных в выходные в соответствии с определенным алгоритмом.

Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д.

В качестве имени процесса используется предложение с активным недвус­мы­сленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следует существительное в винительном падеже, например , "Изменить масштаб изображения", "Печатать документ", "Открыть документ", "Рисовать линию", "Перерисовать изображение".

Использование таких глаголов, как "обработать", "модернизировать" или "отредактировать" означает, как правило, недостаточно глубокое понимание данного процесса и требует дальнейшего анализа.

Системы, подсистемы, процессы, действия (или работы) изображаются одинаково: прямоугольниками со скругленными углами — функциональными блоками (рис. 10.2).

В общем случае смысл их совпадает со смыслом действий в нотациях IDEF0 и IDEF3. Идентифицируются на диаграммах аналогично функциональным блокам в нотации IDEF0 (префикс, номер диаграммы, номер объекта). Так же как действия в IDEF3, они имеют входы и выходы, но не поддерживают управления и механизмы, как функциональные блоки в IDEF0.

Каждому функциональному блоку дается текстовое описание .

В "Техническом задании", в разделе "Требования к системе" при перечислении работ, которые можно выполнять с помощью разрабатываемого ПО, обязательно указываются их подробные определения (описания).

Поток данных (стрелка)

Поток данных описывает движение объекта из одной части системы в другую.

В качестве источников и приемников данных для потоков могут выступать внешние сущности, процессы и накопители.

Физически поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.

Ориентация стрелки показывает направление потока. Могут применяться двунаправленные стрелки для описания диалогов типа "команда-ответ". В каждом конкретном случае аналитик решает, что удобнее изобразить: двунаправленный поток или два различных потока в противоположных направлениях.

Поскольку в DFD каждая сторона функционального блока не имеет четкого назначения, как в IDEF0, стрелки могут подходить и выходить из любой грани блока.

Каждый поток данных имеет имя , отражающее его содержание. В имени должно использоваться существительное . Каждому потоку данных дается текстовое описание .

В приложении к "Техническому заданию" приводятся имена и текстовые описания потоков данных в виде словаря данных.

В DFD стрелки могут сливаться и раз­ветвляться, что позволяет описать декомпозицию стрелок (потоков данных) . Каждый новый сегмент (подпоток) сливающейся или разветвляющейся стрелки может иметь собственное имя.

При декомпозиции потоков необходимо строго определить потоки и подпотоки в словаре данных , т.е. четко определить структуру данных.

Структура данных — поименованная, логически связанная группа элементов и подструктур данных, хранящаяся в накопителе или передаваемая в информационном потоке. Средство для задания состава и взаимосвязи отдельных элементов данных.

Для увеличения наглядности и читабельности диаграмм осуществляют декомпозицию потоков через границы диаграмм .

Например, в детализируемую работу входит поток "Данные", на детализирующей диаграмме этот поток удаляют, а вместо него вводят потоки "Данные для работы с изображением", "Данные о параметрах интерфейса", "Данные об атрибутах изображения", как будто бы они переданы из детализируемой работы.

Но для целей балансировки обязательно должно существовать строгое определение структуры потока "Данные": поток "Данные" состоит из подпотоков "Данные для работы с изображением", "Данные о параметрах интерфейса", "Данные об атрибутах изображения" и больше никаких других элементов данных .

Накопитель (хранилище) данных

Накопитель данных представляет собой абстрактное устройство для хранения информации, обладающее возможностью записи и извлечения данных. Способы доступа (помещения и извлечения) и хранения данных в накопителях могут быть любыми и в ходе анализа не уточняются.

Накопитель изображает объект в покое в отличие от потока данных, описывающего объект в движении.

Физически накопитель данных может быть реализован в виде ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д.

При разработке ПО накопители данных являются прообразами файлов или баз данных . Поэтому описание хранящихся в них данных должно быть увязано с информационной моделью .

Имя накопителя должно быть существительным и выбирается из соображения наибольшей информативности для проектировщика. В случае, когда поток данных входит или выходит в/из накопителя, и его структура соответствует структуре накопителя, он должен иметь то же самое имя.

Накопитель данных изображается, как показано на рис. 10.3. Один накопитель может быть использован многократно на одной или нескольких диаграммах. Идентифицируется накопитель данных порядковым номером (одним и тем же на разных копиях накопителя).

Каждому накопителю дается текстовое описание : "используется при выполнении такого-то процесса (действия, работы)", "предназначен для хранения таких-то данных". Примеры накопителей с возможными текстовыми описаниями приведены в табл. 10.2.

Таблица 10.2

Примеры накопителей

Название накопителя

Описание

Изображение в памяти

Накопитель предназначен для хранения информации о наборе пикселей, составляющих изображение

Открытый документ в ОП

Предназначен для хранения в ОП содержимого текстового документа и его полное имя (включая путь)

Параметры интерфейса в памяти

Используется для хранения информации о размере рабочего окна и состоянии вспомогательных окон

Атрибуты изображения в памяти

Используется для хранения ширины, высоты изображения, единиц измерения, вида палитры

Данные, которые хранятся в накопителе — это объекты предметной области и при построении модели данных они будут моделироваться в виде "сущностей" (не путать с сущностями нотации DFD).

Для каждого накопителя данных составляется таблица, в которой перечисляется состав данных в накопителях .

Табл. 10.3 — 10.5 являются примерами таких таблиц для модели "Графический редактор (Paint)" в нотации DFD, показанной на рис. 10.4 – 10.7.

Таблица 10.3

Содержимое накопителя данных "Изображение в памяти"

Название поля

Описание

Имя файла

Текстовый

Кодировка цвета

Числовой, целый

Код кодировки

Содержимое

Текстовый

Содержимое графического файла — информация о наборе пикселей, составляющих изображение

Размер изображения в памяти зависит от ширины и высоты рисунка.


Максимальный размер изображения: 99999*99999 пикселей

Таблица 10.4

Содержимое накопителя данных "Атрибуты изображения в памяти"

Название полей

Описание

Ширина картинки

Числовой, целый

Поле хранит ширину картинки в пикселях (max 99999)

Высота картинки

Числовой, целый

Поле хранит высоту картинки в пикселях (max 99999)

Вид палитры

Логический

Цветная или черно-белая (1/0)

Единицы измерения

Логический

Сантиметр, дюйм, точка

Таблица 10.5

Содержимое накопителя данных "Параметры интерфейса в памяти"

Название полей

Описание

Ширина рабочего окна

Числовой, целый

Поле хранит ширину рабочего окна в пикселях (max 1600)

Высота рабочего окна

Числовой, целый

Поле хранит высоту рабочего окна в пикселях (max 1200)

Набор инструментов

Логический

Показать/Скрыть (1/0)

Логический

Показать/Скрыть (1/0)

Строка состояния

Логический

Показать/Скрыть (1/0)

Панель атрибутов текста

Логический

Показать/Скрыть (1/0)

Для ПО "Текстовый редактор (Блокнот из группы Стандартные ОС Windows)", в котором ведется работа с текстовым файлом и в ОП хранится содержимое текстового файла, содержимое накопителя "Открытый документ в ОП" может быть таким, как показано в табл. 10.6.

Таблица 10.6

Содержимое накопителя данных "Открытый документ в ОП"

Название поля

Описание

Имя файла

Текстовый

Полное имя файла (включая путь)

Кодировка

Текстовый

Название кодировки (список поддерживаемых кодировок зависит от ОС)

Содержимое

Текстовый

Содержимое документа — информация о наборе символов, составляющих текстовый документ

Если используется накопитель данных для хранения значений текущего формата отображения, то содержимое такого накопителя может быть таким, как показано в табл. 10.7.

Таблица 10.7

Содержимое накопителя данных "Текущий формат отображения"

Название поля

Описание

Название шрифта

Текстовый

Название одного из возможных шрифтов, например, Times New Roman

Начертание шрифта

Текстовый

Название одного из возможных начертаний, например, курсив, полужирный

Размер шрифта

Числовой, целый

Значение, соответствующее одному из возможных размеров шрифта

Перенос текста

Логический

1 — перенос включен, 0 — отключен

Если для работы ПО используются возможные варианты параметров (например, варианты параметров настройки программы; варианты возможных шрифтов; варианты возможных размеров шрифта), из которых пользователь выбирает текущие значения, то содержимое накопителя данных с вариантами по каждому параметру может быть таким, как показано в табл. 10.8.

Таблица 10.8

Содержимое накопителя данных "Варианты параметров настройки программы"

Название полей

Описание

Название параметра

Текстовый

Поле хранит название параметра

Список возможных значений этого параметра

Массив числовой, целый (или Массив логический, или Массив строк)

4 байта (или 1 бит, или размер одной строки) * кол-во вариантов значений

Поле хранит список значений параметра

И так по каждому параметру, хранимому в накопителе данных

Основой данной методологии графического моделирования информационных систем является специальная технология построения диаграмм потоков данных DFD. В разработке методологии DFD приняли участие многие аналитики, среди которых следует отметить Э. Йордона (Е. Yourdon). Он является автором одной из первых графических нотаций DFD . В настоящее время наиболее распространенной является так называемая нотация Гейна-Сарсона (Gene-Sarson), основные элементы которой будут рассмотрены в этом разделе.

Модель системы в контексте DFD представляется в виде некоторой информационной модели, основными компонентами которой являются различные потоки данных, которые переносят информацию от одной подсистемы к другой. Каждая из подсистем выполняет определенные преобразования входного потока данных и передает результаты обработки информации в виде потоков данных для других подсистем.

Основными компонентами диаграмм потоков данных являются:

Внешние сущности

Накопители данных или хранилища

Процессы

Потоки данных

Системы/подсистемы

Внешняя сущность представляет собой материальный объект или физическое лицо, которые могут выступать в качестве источника или приемника информации. Определение некоторого объекта или системы в качестве внешней сущности не является строго фиксированным. Хотя внешняя сущность находится за пределами границ рассматриваемой системы, в процессе дальнейшего анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы модели системы. С другой стороны, отдельные процессы могут быть вынесены за пределы диаграммы и представлены как внешние сущности. Примерами внешних сущностей могут служить: клиенты организации, заказчики, персонал, поставщики.

Внешняя сущность обозначается прямоугольником с тенью (рис. 2.15), внутри которого указывается ее имя. При этом в качестве имени рекомендуется использовать существительное в именительном падеже. Иногда внешнюю сущность называют также терминатором.

Рис. 2.15. Изображение внешней сущности на диаграмме потоков данных

Процесс представляет собой совокупность операций по преобразованию входных потоков данных в выходные в соответствии с определенным алгоритмом или правилом. Хотя физически процесс может быть реализован различными способами, наиболее часто подразумевается программная реализация процесса. Процесс на диаграмме потоков данных изображается прямоугольником с закругленными вершинами (рис. 2.16), разделенным на три секции или поля горизонтальными линиями. Поле номера процесса служит для идентификации последнего. В среднем поле указывается имя процесса. В качестве имени рекомендовано использовать глагол в неопределенной форме с необходимыми дополнениями. Нижнее поле содержит указание на способ физической реализации процесса.

Рис. 2.16. Изображение процесса на диаграмме потоков данных

Рис. 2.17. Изображение подсистемы на диаграмме потоков данных

Информационная модель системы строится как некоторая иерархическая схема в виде так называемой контекстной диаграммы, на которой исходная модель последовательно представляется в виде модели подсистем соответствующих процессов преобразования данных. При этом подсистема или система на контекстной диаграмме DFD изображается так же, как и процесс – прямоугольником с закругленными вершинами (рис. 2.17).

Накопитель данных или хранилище представляет собой абстрактное устройство или способ хранения информации, перемещаемой между процессами. Предполагается, что данные можно в любой момент поместить в накопитель и через некоторое время извлечь, причем физические способы помещения и извлечения данных могут быть произвольными. Накопитель данных может быть физически реализован различными способами, но наиболее часто предполагается его реализация в электронном виде на магнитных носителях. Накопитель данных на диаграмме потоков данных изображается прямоугольником с двумя полями (рис. 2.18). Первое поле служит для указания номера или идентификатора накопителя, который начинается с буквы "D". Второе поле служит для указания имени. При этом в качестве имени накопителя рекомендуется использовать существительное, которое характеризует способ хранения соответствующей информации.

Рис. 2.18. Изображение накопителя на диаграмме потоков данных

Наконец, поток данных определяет качественный характер информации, передаваемой через некоторое соединение от источника к приемнику. Реальный поток данных может передаваться по сети между двумя компьютерами или любым другим способом, допускающим извлечение данных и их восстановление в требуемом формате. Поток данных на диаграмме DFD изображается линией со стрелкой на одном из ее концов, при этом стрелка показывает направление потока данных. Каждый поток данных имеет свое собственное имя, отражающее его содержание.

Таким образом, информационная модель системы в нотации DFD строится в виде диаграмм потоков данных, которые графически представляются с использованием соответствующей системы обозначений. В качестве примера рассмотрим упрощенную модель процесса получения некоторой суммы наличными по кредитной карточке клиентом банка. Внешними сущностями данного примера являются клиент банка и, возможно, служащий банка, который контролирует процесс обслуживания клиентов. Накопителем данных может быть база данных о состоянии счетов отдельных клиентов банка. Отдельные потоки данных отражают характер передаваемой информации, необходимой для обслуживания клиента банка. Соответствующая модель для данного примера может быть представлена в виде диаграммы потоков данных (рис. 2.19).

В настоящее время диаграммы потоков данных используются в некоторых CASE-средствах для построения информационных моделей систем обработки данных. Основной недостаток этой методологии также связан с отсутствием явных средств для объектно-ориентированного представления моделей сложных систем, а также для представления сложных алгоритмов обработки

данных. Поскольку на диаграммах DFD не указываются характеристики времени выполнения отдельных процессов и передачи данных между процессами, то модели систем, реализующих синхронную обработку данных, не могут быть адекватно представлены в нотации DFD. Все эти особенности методологии структурного системного анализа ограничили возможности ее широкого применения и послужили основой для включения соответствующих средств в унифицированный язык моделирования.


Рис. 2.19. Пример диаграммы DFD для процесса получения некоторой суммы наличными по кредитной карточке

Общие положения

DFD - общепринятое сокращение от англ. Data Flow Diagrams - диаграммы потоков данных. Так называется методология графического структурного анализа, описывающая внешние по отношению к системе источники и адресаты данных, логические функции, потоки данных и хранилища данных, к которым осуществляется доступ.

Диаграмма потоков данных (data flow diagram, DFD)(Рис.2.1.) - один из основных инструментов структурного анализа и проектирования информационных систем, существовавших до широкого распространения UML. Несмотря на имеющее место в современных условиях смещение акцентов от структурного к объектно-ориентированному подходу к анализу и проектированию систем, «старинные» структурные нотации по-прежнему широко и эффективно используются как в бизнес-анализе, так и в анализе информационных систем.

Рис.2.1. Диаграмма потоков данных.

Исторически сложилось так, что для описания диаграмм DFD используются две нотации - Йодана (Yourdon) и Гейна-Сарсона (Gane-Sarson), отличающиеся синтаксисом. На приведенной ниже иллюстрации использована нотация Гейна-Сарсона.

Информационная система принимает извне потоки данных. Для обозначения элементов среды функционирования системы используется понятие внешней сущности. Внутри системы существуют процессы преобразования информации, порождающие новые потоки данных. Потоки данных могут поступать на вход к другим процессам, помещаться (и извлекаться) в накопители данных, передаваться к внешним сущностям.

Модель DFD, как и большинство других структурных моделей - иерархическая модель. Каждый процесс может быть подвергнут декомпозиции, то есть разбиению на структурные составляющие, отношения между которыми в той же нотации могут быть показаны на отдельной диаграмме. Когда достигнута требуемая глубина декомпозиции - процесс нижнего уровня сопровождается мини-спецификацией (текстовым описанием).

Кроме того, нотация DFD поддерживает понятие подсистемы - структурной компоненты разрабатываемой системы.

Нотация DFD - удобное средство для формирования контекстной диаграммы, то есть диаграммы, показывающей разрабатываемую АИС в коммуникации с внешней средой. Это - диаграмма верхнего уровня в иерархии диаграмм DFD. Ее назначение - ограничить рамки системы, определить, где заканчивается разрабатываемая система и начинается среда. Другие нотации, часто используемые при формировании контекстной диаграммы - диаграмма SADT, диаграмма Диаграмма вариантов использования.

Для решения задачи функционального моделирования на базе структурного анализа традиционно применяются два типа моделей: IDEF0-диаграммы и диаграммы потоков данных.

Методология разработки процессных диаграмм обычно применяется при проведении обследований предприятий в рамках проектов управленческого консалтинга, а также в проектах автоматизации крупных объектов при экспресс-обследовании (обычно для составления развернутого плана работ).

Нотация диаграмм потоков данных позволяет отображать на диаграмме как шаги бизнес-процесса, так и поток документов и управления (в основном, управления, поскольку на верхнем уровне описания процессных областей значение имеет передача управления). Также на диаграмме можно отображать средства автоматизации шагов бизнес-процессов. Обычно используется для отображения третьего и ниже уровня декомпозиции бизнес-процессов (первым уровнем считается идентифицированный перечень бизнес-процессов, а вторым - функции, выполняемые в рамках бизнес-процессов).

Диаграммы потоков данных (Data flow diagramming, DFD):

· являются основным средством моделирования функциональных требований к проектируемой системе;

· создаются для моделирования существующего процесса движения информации;

· используются для описания документооборота, обработки информации;

· применяются как дополнение к модели IDEFO для более наглядного отображения текущих операций документооборота (обмена информацией);

· обеспечивают проведение анализа и определения основных направлений реинжиниринга ИС.

Диаграммы DFD могут дополнить то, что уже отражено в модели IDEF0, поскольку они описывают потоки данных, позволяя проследить, каким образом происходит обмен информацией как внутри системы между бизнес-функциями, так и системы в целом с внешней информационной средой

В случае наличия в моделируемой системе программной/программируемой части (практически всегда) предпочтение, как правило, отдается DFD по следующим соображениям.

1. DFD-диаграммы создавались как средство проектирования программных систем, тогда как IDEF0 - как средство проектирования систем вообще, поэтому DFD имеют более богатый набор элементов, адекватно отражающих их специфику (например, хранилища данных являются прообразами файлов или баз данных).

2. Наличие мини-спецификаций DFD-процессов нижнего уровня позволяет преодолеть логическую незавершенность IDEF0, а именно обрыв модели на некотором достаточно низком уровне, когда дальнейшая ее детализация становится бессмысленной, и построить полную функциональную спецификацию разрабатываемой системы.

3. Существуют и поддерживаются рядом CASE-инструментов алгоритмы автоматического преобразования иерархии DFD в структурные карты, демонстрирующие межсистемные и внутрисистемные связи, а также иерархию систем, что в совокупности с мини-спецификациями является завершенным заданием для программиста.

С помощью DFD-диаграмм требования к проектируемой ИС разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель декомпозиции DFD-функций - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами. На схемах бизнес-процесса отображаются:

· функции процесса;

· входящая и исходящая информация, при описании документов;

· внешние бизнес-процессы, описанные на других диаграммах;

· точки разрыва при переходе процесса на другие страницы.

Если при моделировании по методологии IDEF0 система рассматривается как сеть взаимосвязанных функций, то при создании DFD-диаграммы система рассматривается как сеть связанных между собой функций, т.е. как совокупность сущностей (предметов).

Структурный анализ - это системный пошаговый подход к анализу требований и проектированию спецификаций системы независимо от того, является ли она существующей или создается вновь. Методологии Гейна-Сарсона (Gane-Sarson) и Йордана/Де Марко (Yourdon/DeMarko) построения диаграмм потоков данных, основанные на идее нисходящей иерархической организации, наиболее ярко демонстрируют этот подход.

Целью этих двух методологий является преобразование общих, неясных знаний о требованиях к системе в точные (насколько это возможно) определения. Обе методологии фокусируют внимание на потоках данных, их главное назначение - создание базированных на графике документов по функциональным требованиям. Методологии поддерживаются традиционными нисходящими методами проектирования и обеспечивают один из лучших способов связи между аналитиками, разработчиками и пользователями системы за счет интеграции следующих средств:

· Диаграмм потоков данных.

· Словарей данных, которые являются каталогами всех элементов данных, присутствующих в DFD, включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты.

· Миниспецификации обработки, описывающие DFD-процессы нижнего уровня и являющиеся базой для кодогенерации.

Миниспецификация.

Миниспецификация - это алгоритм описания задач, выполняемых процессами, множество всех миниспецификации является полной спецификацией системы. Миниспецификации содержат номер и/или имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Известно большое число разнообразных методов, позволяющих задать тело процесса, соответствующий язык может варьироваться от структурированного естественного языка или псевдокода до визуальных языков проектирования (типа FLOW-форм и диаграмм Насси--Шнейдермана) и формальных компьютерных языков.

Проектные спецификации строятся по DFD и их миниспецификациям автоматически. Наиболее часто для описания проектных спецификаций используется методика структурных карт Джексона, иллюстрирующая иерархию модулей, связи между ними и некоторую информацию об их исполнении (последовательность вызовов, итерацию). Существует ряд методов автоматического преобразования DFD в структурные карты.

Главной отличительной чертой методологии Гейна-Сарсона является наличие этапа моделирования данных, определяющего содержимое хранилищ данных (БД и файлов) в DFD в третьей нормальной форме. Этот этап включает построение списка элементов данных, располагающихся в каждом хранилище данных; анализ отношений между данными и построение соответствующей диаграммы связей между элементами данных; представление всей информации по модели в виде связанных нормализованных таблиц. Кроме того, методологии отличаются чисто синтаксическими аспектами, так, например различны графические символы, представляющие компоненты DFD.

Рассматриваемые методы представляют собой методы, помогающими от чистого листа бумаги или экрана перейти к хорошо организованной модели системы. Обе методологии основаны на простой концепции нисходящего поэтапного разбиения функций системы на подфункции:

На первом этапе формируется контекстная диаграмма верхнего уровня, идентифицирующая границы системы и определяющая интерфейсы между системой и окружением.

После интервьюирования эксперта предметной области, формируется список внешних событий, на которые система должна реагировать. Для каждого из таких событий строится пустой процесс (bubble) в предположении, что его функция обеспечивает требуемую реакцию на это событие, которая в большинстве случаев включает генерацию выходных потоков и событий (но может также включать и занесение информации в хранилище данных для ее использования другими событиями и процессами).

На следующем уровне детализации аналогичная деятельность осуществляется для каждого из пустых процессов.

Для усиления функциональности в данной нотации диаграмм предусмотрены специфические элементы, предназначенные для описания информационных и документопотоков, такие как внешние сущности и хранилища данных.

Основные символы DFD-диаграмм по этим нотациям:

Рис. 3.1. Основные символы DFD-диаграмм

Помимо нотации Йордона/Де Марко и Гейна - Сарсона для элементов DFD-диаграм могут использоваться и другие условные обозначения (OMT, SSADM, и т.д.). Все они обладают практически одинаковой функциональностью и различаются лишь в деталях.

Несмотря на то, что методология IDEF0 получила широкое распространение, по мнению многих аналитиков DFD гораздо больше подходит для проектирования информационных систем вообще и баз данных в частности. DFD позволяет уже на стадии функционального моделирования определить базовые требования к данным (этому способствует разделение потоков данных на материальные, информационные и управляющие). Кроме того интеграция DFD-моделей и ER-моделей (entity-relationship, "сущность-связь") не вызывает затруднений. Например, можно определить список атрибутов хранилищ данных, последние на стадии информационного моделирования однозначно отображаются в сущности модели "сущность- связь".

В свою очередь, как уже отмечалось, IDEF0 больше подходит для решения задач, связанных с управленческим консультированием (реинжинирингом процессов). Этому способствует также тесная связь IDEF0 с методом функционально - стоимостного анализа ABC (Activity Based Costing), позволяющим определить схему расчета стоимости выполнения той или иной деловой процедуры. Однако, существует ряд CASE - систем, предлагающих методологию IDEF0 на этапе функционального обследования предметной области. В таких системах на следующий этап передается просто список всех объектов IDEF0-модели (входы, выходы, механизмы, управление), которые затем рассматриваются на предмет включения в информационную модель.

2.2.4.3. Терминология DFD-нотации .

DFD-БЛОКИ – графическое изображение операции (процесса, функции, работы) по обработке или преобразованию информации (данных). Смысл DFD-блока, отображающего функцию совпадает со смыслом блоков IDEFO и IDEF3, заключающиеся в преобразовании входов в выходы. DFD-блоки также имеют входы и выходы, но не поддерживают управление и механизмы, как IDEFO.

Назначение функции состоит в создании из входных потоков выходных в соответствии с действием, определяемым именем процесса. Поэтому имя функции должно содержать глагол в неопределенной форме с последующим дополнением. Функции обычно именуются по названию системы, например "Разработка системы автоматизированного проектирования"". Рекомендуется использовать глаголы, отображающие динамические отношения, например: «рассчитать», «получить», «заказать», «фрезеровать», «точить», «вычислить», «включить», «моделировать» и т.д. Если автор использует такие глаголы, как “обработать”, “модернизировать”, или “отредактировать”, то это означает, что он, вероятно, пока недостаточно глубоко понимает данную функцию процесса и требуется дальнейший анализ.

По нотации Гейн-Сарсона DFD-блок изображается прямоугольником со скругленными углами. Каждый блок должен иметь уникальный номер для ссылки на него внутри диаграммы. Номер каждого блока может включать префикс, номер родительского блока (А) и номер объекта, представляющий собой уникальный номер блока на диаграмме. Например, функция может иметь номер А.12.4.

Для того чтобы избежать пересечений линий потоков данных один и тот же элемент может на одной и той же диаграмме отображаться несколько раз; в таком случае два или более прямоугольника, обозначающих один и тот же элемент, могут идентифицироваться линией перечеркивающей нижний правый угол.

DATA FLOW (поток данных) – механизм, использующийся для моделирования передачи информации между участниками процесса информационного обмена (функциями, хранилищами данных, внешними ссылками). По нотации Гейн-Сарсона поток данных (документы, объекты, сотрудники, отделы или иные участники обработки информации) изображается стрелкой между двумя объектами DFD-диаграммы, предпочтительно горизонтальной и/или вертикальной, причем направление стрелки указывает направление потока. Каждая стрелка должна иметь источник и цель. В отличие от стрелок IDEF0-диаграммы (ICOM), стрелки DFD могут входить или выходить из любой стороны блока.

Стрелки описывают, как объекты (включая данные) двигаются из одной части системы в другую. Поскольку в DFD каждая сторона блока не имеет четкого назначения, в отличие от блоков IDEF0-диаграммы, стрелки могут подходить и выходить из любой грани. В DFD-диаграммах для описания диалогов типа команды-ответа между операциями, применяются двунаправленные стрелки между функцией и внешней сущностью и/или между внешними сущностями. Стрелки могут сливаться и разветвляться, что позволяет описать декомпозицию стрелок. Каждый новый сегмент сливающейся или разветвляющейся стрелки может иметь собственное имя.

Иногда информация может двигаться в одном направлении, обрабатываться и возвращаться обратно. Такая ситуация может моделироваться либо двумя различными потоками, либо одним двунаправленным. На поток данных можно ссылаться, указывая процессы, сущности или накопители данных, которые поток соединяет.

Каждый поток должен иметь имя, расположенное вдоль или над стрелкой, выбранное таким образом, чтобы в наибольшей степени передавать смысл содержания потока пользователям, которые будут рассматривать диаграмму потоков данных. Набрасывая диаграмму потоков данных, можно опустить наименования, если оно является очевидным для пользователя, но автор диаграммы должен в любой момент представить описание потока.

DATA FLOW ДИАГРАММА (DFD-диаграмма) (Рис.4.1.)– диаграммы применяемые для графического представления (flowchart) движения и обработки информации в организации или в каком-либо процессе. Обычно диаграммы этого типа используются для проведения анализа организации информационных потоков и для разработки ИС. DFD-диаграммы являются ключевой частью документа спецификации требований - графическими иерархическими спецификациями, описывающими систему с позиций потоков данных. Каждый узел-процесс в DFD может развертываться в диаграмму нижнего уровня, что позволяет на любом уровне абстрагироваться от деталей. Рис.4.1. Пример DFD- диаграммы потоков данных.

Для диаграмм этого типа обычно применяется сокращенное обозначение DFD. DFD являются. В состав DFD могут входить четыре графических символа, представляющих потоки данных, процессы преобразования входных потоков данных в выходные, внешние источники и получатели данных, а также файлы и БД, требуемые процессами для своих операций.

DFD-диаграммы моделируют функции, которые система должна выполнять, но почти ничего не сообщают об отношениях между данными, а также о поведении системы в зависимости от времени - для этих целей используются диаграммы сущность-связь и диаграммы переходов состояний, соответственно.

DATA STORE (хранилище данных)(Рис.4.2.) – графическое представление потоков данных импортируемых/экспортируемых из соответствующих баз данных. Обычно это таблицы для хранения документов. В отличие от стрелок, описывающих объекты в движении, хранилища данных изображают объекты в покое. Накопители данных являются неким прообразом базы данных информационной системы организации. Хранилища данных включаются в модель системы в том случае, если имеются этапы технологического цикла, на которых появляются данные, которые необходимо сохранять в памяти. При отображении процесса сохранения данных стрелка потока данных направляется в хранилище данных, и, наоборот – из хранилища, если идет импорт данных.

Рис.4.2. Хранилище данных.

Хранилища данных предназначены для изображения неких абстрактных устройств для хранения информации, которую можно туда в любой момент времени поместить или извлечь, безотносительно к их конкретной физической реализации. Хранилища данных используются:

в материальных системах - там, где объекты ожидают обработки, например в очереди;

в системах обработки информации для моделирования механизмов сохранения данных для дальнейших операций.

По нотации Гейн-Сарсона хранилище данных обозначается двумя горизонтальными линиями, замкнутыми с одного края. Каждое хранилище данных должно идентифицироваться для ссылки буквой D и произвольным числом в квадрате с левой стороны, например D5. Имя должно подбираться с учетом наибольшей информативности для пользователя.

В модели может быть создано множество вхождений хранилищ данных, каждое из которых может иметь одинаковое имя и ссылочный номер. Для того, чтобы не усложнять диаграмму потоков данных пересечениями линий, можно изображать дубликаты накопителя данных дополнительными вертикальными линиями с левой стороны квадрата.

EXTERNAL REFERENCE (внешняя ссылка, внешняя сущность, external entities) (Рис.4.3.)– объект диаграммы потоков данных, являющийся источником или приемником информации извне модели. Внешние ссылки/сущности изображают входы и/или выходы, т.е. обеспечивают интерфейс с внешними объектами, находящимися вне моделируемой системы. Внешними ссылками системы обычно являются логические классы предметов или людей, представляющие собой источник или приемник сообщений, например, заказчики, конструкторы, технологи, производственные службы, кладовщики и т.д. Это могут быть специфические источники, такие, как бухгалтерия, информационно-поисковая система, служба нормоконтроля, склад. Если рассматриваемая система принимает данные от другой системы или передает данные в другую систему, то эта другая система является элементом внешней системы. Без объекта «внешняя сущность» аналитику бывает иногда сложно определить, откуда пришла в компанию данные документы. Или какие документы еще приходят от, такой внешней сущности как, например, "клиент".

Рис.4.3. Внешняя сущность.

По нотации Гейн-Сарсона пиктограмма внешней ссылки представляет собой оттененный прямоугольник верхняя и левая сторона, которого имеет двойную толщину для того, чтобы можно было выделить этот символ среди других обозначений на диаграмме, и обычно располагается на границах диаграммы. Внешняя ссылка может идентифицироваться строчной буквой Е в левом верхнем углу и уникальным номером, например Е5. Кроме того, внешняя ссылка имеет имя.

При рассмотрении системы как внешней функции, часто указывается, что она находится за пределами границ, моделируемой системы. После проведения анализа некоторые внешние ссылки могут быть перемещены внутрь диаграммы потоков данных рассматриваемой системы или, наоборот, какая-то часть функций системы может быть вынесена и рассмотрена как внешняя ссылка.

При интерпретации DFD-диаграммы используются следующие правила:

· функции преобразуют входящие потоки данных в выходящие;

· хранилища данных не изменяют потоки данных, а служат только для хранения поступающих объектов;

· преобразования потоков данных во внешних ссылках игнорируется.

Помимо этого, для каждого информационного потока и хранилища определяются связанные с ними элементы данных. Каждому элементу данных присваивается имя, также для него может быть указан тип данных и формат. Именно эта информация является исходной на следующем этапе проектирования - построении модели "сущность-связь". При этом, как правило, информационные хранилища преобразуются в сущности, проектировщику остается только решить вопрос с использованием элементов данных, не связанных с хранилищами.

Представление потоков в виде стрелок совместно с хранилищами данных и внешними сущностями делает модели DFD более похожими на физические характеристики системы - движение объектов, хранение объектов, поставка и распространение объектов.

Построение диаграмм.

Диаграммы DFD могут быть построены с использованием традиционного структурного анализа, подобно тому, как строятся диаграммы IDEFO:

· строится физическая модель, отображающая текущее состояние дел;

· полученная модель преобразуется в логическую модель, которая отображает требования к существующей системе;

· строится модель, отображающая требования к будущей системе;

· строится физическая модель, на основе которой должна быть построена новая система.

Альтернативным подходом является подход, применяемый при создании программного обеспечения, называемый событийным разделением (event partitioning), в котором различные диаграммы DFD выстраивают модель системы:

· логическая модель строится как совокупность процессов и документирования того, что эти процессы должны делать;

· с помощью модели окружения система описывается как взаимодействующий с событиями из внешних сущностей объект. Модель окружения (environment model) обычно содержит описание цели системы, одну контекстную диаграмму и список событий. Контекстная диаграмма содержит один блок, изображающий систему в целом, внешние сущности, с которыми система взаимодействует, ссылки и некоторые стрелки, импортированные из диаграмм IDEF0 и DFD. Включение внешних ссылок в контекстную диаграмму не отменяет требования методологии четко определить цель, область и единую точку зрения на моделируемую систему;

· модель поведения (behavior model) показывает, как система обрабатывает события. Эта модель состоит из одной диаграммы, в которой каждый блок изображает каждое событие из модели окружения, могут быть добавлены хранилища для моделирования данных, которые необходимо запоминать между событиями. Потоки добавляются для связи с другими элементами, и диаграмма проверяется с точки зрения соответствия модели окружения.

Полученные диаграммы могут быть преобразованы с целью более наглядного представления системы, в частности могут быть декомпозированы функции.

Пример DFD-диаграмм по нотации Гейна-Сарсона для предприятия, строящего свою деятельность по принципу "изготовление на заказ" приведен на рисунке 5.1.

На основании полученных заказов формируется план выпуска продукции на определенный период. В соответствии с этим планом определяются потребность в комплектующих изделиях и материалах, а также график загрузки производственного оборудования. После изготовления продукции и проведения платежей, готовая продукция отправляется заказчику.

Заказы подвергаются входному контролю и сортировке. Если заказ не отвечает номенклатуре товаров или оформлен неправильно, то он аннулируется с соответствующим уведомлением заказчика. Если заказ не аннулирован, то определяется, имеется ли на складе соответствующий товар. В случае положительного ответа выписывается счет к оплате и предъявляется заказчику, при поступлении платежа товар отправляется заказчику. Если заказ не обеспечен складскими запасами, то отправляется заявка на товар производителю. После поступления требуемого товара на склад компании заказ становится обеспеченным и повторяет вышеописанный маршрут.

Рис.5.1. Пример DFD-диаграмм по нотации Гейна-Сарсона для предприятия

Эта диаграмма представляет самый верхний уровень функциональной модели. Естественно, это весьма грубое описание предметной области. Уточнение модели производится путем детализации необходимых функций на DFD-диаграмме следующего уровня. Так мы можем разбить функцию "Определение потребностей и обеспечение материалами" на подфункции "Определение потребностей", "Поиск поставщиков", "Заключение и анализ договоров на поставку", "Контроль платежей", "Контроль поставок", связанные собственными потоками данных, которые будут представлены на отдельной диаграмме. Детализация модели должна производится до тех пор, пока она не будет содержать всю информацию, необходимую для построения информационной системы.

К преимуществам методики DFD относятся:

· возможность однозначно определить внешние сущности, анализируя потоки информации внутри и вне системы;

· возможность проектирования сверху вниз, что облегчает построение модели "как должно быть";

· наличие спецификаций процессов нижнего уровня, что позволяет преодолеть логическую незавершенность функциональной модели и построить полную функциональную спецификацию разрабатываемой системы.

К недостаткам модели отнесем:

· необходимость искусственного ввода управляющих процессов, поскольку управляющие воздействия (потоки) и управляющие процессы с точки зрения DFD ничем не отличаются от обычных;

· отсутствие понятия времени, т.е. отсутствие анализа временных промежутков при преобразовании данных (все ограничения по времени должны быть введены в спецификациях процессов).

Список литературы:

1. Андрейчиков А. В. Андрейчикова О. Н. Интелектуальные информационные системы Изд. «Финансы и статистика» г.Москва 2004г. 422с.

2. Анисимов Б.П., Котов В.В. «Современные методологии структурного анализа и проектирования систем обработки информации» журнал "Программные продукты и системы" № 2 за 1997 год.[ 24.06.1997 ]

3. Козленко Л. «Проектирование информационных систем. Часть 1. Этапы разработки проекта: стратегия и анализ» журнал КомпьютерПресс, 9"2001г.

4. Марка Д.А. МакГоуэк К. SADT-методология структурного анализа и проектирования изд. Метатехнология, М. 1993г.

5. Вендров А.М. CASE-технологии современные методы и средства проектирования и систем изд. Финансы и статистика М. 1998г.

Интернет ресурсы:

http://www.aiportal.ru/

http://www.itstan.ru/

http://www.intuit.ru/

SADT-тенология

Введение

SADT (Structured Analysis and Design Technique) - одна из самых известных методологий анализа и проектирования систем, введенная в 1973 г. Россом (Ross). SADT успешно использовалась в военных, промышленных и коммерческих организациях для решения широкого спектра задач, таких как программное обеспечение телефонных сетей, системная поддержка и диагностика, долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, конфигурация компьютерных систем, обучение персонала, встроенное ПО для оборонных систем. управление финансами и материально-техническим снабжением и др. Данная методология широко поддерживается Министерством обороны США. которое было инициатором разработки стандарта IDEF0 как подмножества SADT. Это, наряду с растущей автоматизированной поддержкой, сделало ее более доступной и простой в употреблении.

С точки зрения SADT модель может основываться либо на функциях системы, либо на ее предметах (планах, данных, оборудовании, ин­формации и т.д.). Соответствующие модели принято называть активностными моделями и моделями данных. Активностная модель представляет с, нужной степенью подробности систему активностей, которые в свою очередь отражают свои взаимоотношения через предметы системы. Модели данных дуальны к активностным моделям и представляют собой подробное описание предметов системы, связанных системными активностями. Полная методология SADT заключается в построении моделей обеих типов для более точного описания сложной системы. Однако, в настоящее время широкое применение нашли только активностные модели, их рас­смотрению и посвящен данный раздел.

SADT-диаграммы

Основным рабочим элементом при моделировании является диаграмма. Модель SADT объединяет и организует диаграммы в иерархические древовидные структуры, при этом чем выше уровень диаграммы, тем она менее детализирована. В состав диаграммы входят блоки, изображающие активности моделируемой системы, связывающие блоки вместе и изображающие взаимодействия и взаимосвязи между блоками. SADT требует, чтобы в диаграмме было 3-6 блоков: в этих пределах диаграммы и модели удобны для чтения, понимания и использования. Вместо одной громоздкой модели используются несколько небольших взаимосвязанных моделей, значения которых взаимодополняют друг друга, делая понятной структуризацию сложного объекта. Однако такое жесткое требование на число блоков на диаграмме ограничивает применение SADT для ряда предметных областей. Например, в банковских структурах имеется 15-20 равноправных деятельностей, которые целесообразно отразить на одной диаграмме. Искусственное их растаскивание по разным уровням SADT-модели явно не улучшает ее понимаемость.

Структура блоков

Блоки на диаграммах изображаются прямоугольниками и сопровождаются текстами на естественном языке, описывающими активности. В отличие от других методов структурного анализа в SADT каждая сторона имеет вполне определенное особое назначение: левая сторона блока предназначена для Входов, верхняя - для Управления, правая - для Выходов, нижняя - для Исполнителей, Такое обозначение отражает определенные принципы активности: Входы преобразуются в Выходы, Управления ограничивают или предписывают условия выполнения, Исполнители описывают, за счет чего выполняются преобразования.

Дуги в SADT представляют наборы предметов и маркируются текстами на естественном языке. Предметы могут состоять с активностями в четырех возможных отношениях: Вход, Выход, Управление, Исполнитель. Каждое из этих отношений изображается дугой, связанной с определен­ной стороной блока - таким образом стороны блока чисто графически сортируют предметы, изображаемые дугами. Входные дуги изображают предметы, используемые и преобразуемые активностями. Управляющие дуги обычно изображают информацию, управляющую действиями активностей. Выходные дуги изображают предметы, в которые преобразуются входы. Исполнительские дуги отражают (по крайней мере частично) реализацию активностей.

Блоки на диаграмме размещаются по "ступенчатой" схеме в соответствии с их доминированием, которое понимается как влияние, оказываемое одним блоком на другие. Кроме того, блоки должны быть пронумерованы, например, в соответствии с их доминированием. Номера блоков служат однозначными идентификаторами для активностей и автоматически организуют эти активности в иерархию модели.

Взаимовлияние блоков может выражаться либо в пересылке Выхода к другой активности для дальнейшего преобразования, либо в выработке управляющей информации, предписывающей, что именно должна делать другая активность. Таким образом, диаграммы SADT являются предписывающими диаграммами, описывающими как преобразования между Входом и Выходом, так и предписывающие правила этих преобразований.

Взаимосвязи

В SADT требуются только пять типов взаимосвязей между блоками для описания их отношений: Управление, Вход, Управленческая Обратная Связь, Входная Обратная Связь, Выход - Исполнитель. Отношения Управления и Входа являются простейшими, поскольку они отражают интуитивно очевидные прямые воздействия. Отношение Управления возникает тогда, когда Выход одного блока непосредственно влияет на блок с меньшим доминированием. Отношение Входа возникает, когда Выход одного блока становится Входом для блока с меньшим доминированием. Обратные связи более сложны, поскольку они отражают итерацию или рекурсию - Выходы из одной активности влияют на будущее выполнение других функций, что впоследствии влияет на исходную активность. Управленческая Обратная Связь возникает, когда Выход некоторого блока влияет на блок с большим доминированием, а отношение Входной Обратной Связи имеет место, когда Выход одного блока становится Входом другого блока с большим доминированием. Отношения Выход - Исполнитель встречаются нечасто и представляют особый интерес. Они отражают ситуацию, при которой Выход одной активности становится средством достижения цели другой активностью.

Материал из ПИЭ.Wiki

DFD (Data Flow Diagramming) - это стандарт моделирования, в котором система представляется в виде сети работ, соединенных между собой объектами, взаимодействующими с результатами данных работ. Сфера применения DFD находится в области моделирования информационных потоков организации. В этой нотации моделируется не последовательность работ, а именно потоки информации (данных) между работами и объектами, которые используют, хранят или "рождают" эти данные.

В соответствии с DFD (Data Flow Diagram) методологией, модель системы определяется как иерархия диаграмм потоков данных, описывающих процессы преобразования информации от момента ее ввода в систему до выдачи конечному пользователю. Диаграммы верхних уровней иерархии - контекстные диаграммы, задают границы модели, определяя её окружение (внешние входы и выходы) и основные рассматриваемые процессы. Контекстные диаграммы детализируются при помощи диаграмм следующих уровней.

Основными элементами диаграмм потоков данных являются :

внешние сущности;

процессы;

накопители данных;

потоки данных.

Внешние сущности

Под внешней сущностью (External Entity) понимается материальный объект, являющийся источником или приемником информации. В качестве внешней сущности на DFD диаграмме могут выступать заказчики, поставщики, клиенты, склад, банк и другие. К сожалению, DFD методология не оформлена как стандарт. По этой причине в диаграммах потоков данных используются различные условные обозначения. На рисунке 1 показаны символы внешних сущностей, используемые в нотациях «Yourdon and Coad Process Notation» и «Gane and Sarson Process Notation».

Определение некоторого объекта в качестве внешней сущности указывает на то, что он находится за пределами границ анализируемой информационной системы.

Процессы

Процессы представляют собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. В реальной жизни процесс может выполняться некоторым подразделением организации, выполняющим обработку входных документов и выпуск отчетов, отдельным сотрудником, программой, установленной на компьютере, специальным логическим устройством и тому подобное.

Накопители данных

Накопители данных предназначены для изображения неких абстрактных устройств для хранения информации, которую можно туда в любой момент времени поместить или извлечь, безотносительно к их конкретной физической реализации.

Накопители данных являются неким прообразом базы данных информационной системы организации.

Внутри символа указывается его уникальное в рамках данной модели имя, наиболее точно, с точки зрения аналитика, отражающее информационную сущность содержимого, например, «Поставщики», «Заказчики», «Счета-фактуры», «Накладные». Символы накопителей данных в качестве дополнительных элементов идентификации могут содержать порядковые номера.

Потоки данных

Поток данных определяет информацию, передаваемую через некоторое соединение (кабель, почтовая связь, курьер) от источника к приемнику. На DFD диаграммах потоки данных изображаются линиями со стрелками, показывающими их направление. Каждому потоку данных присваивается имя, отражающее его содержание.

В DFD используются следующие типы объектов: · работа (activity) - синоним работе в IDEF0 и IDEF3; · внешняя сущность (external entity) - объекты - источники/получатели информации/данных, изменяемых или используемых в данной функции. · стрелка (data flow) - обозначение потока информации (данных); · data store (хранилище данных) - любой механизм или абстракция (например, запись в базе данных), в которой хранятся данные. Потоки данных между работами в DFD возможны не только опосредованно, через хранилища данных, но и непосредственно между работами, если данные не поступают сначала в хранилище. Нотации IDEF0, IDEF3 и DFD могут быть последовательно использованы при все более и более глубокой проработке модели организации, завершающим этапом которой может быть детальное описание бизнес-процессов и информационной системы организации

Построение иерархии диаграмм потоков данных

Первым шагом при построении иерархии ДПД является построение контекстных диаграмм. Обычно при проектировании относительно простых ИС строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы.

Если же для сложной системы ограничиться единственной контекстной диаграммой, то она будет содержать слишком большое количество источников и приемников информации, которые трудно расположить на листе бумаги нормального формата, и кроме того, единственный главный процесс не раскрывает структуры распределенной системы. Признаками сложности (в смысле контекста) могут быть: наличие большого количества внешних сущностей (десять и более); распределенная природа системы; многофункциональность системы с уже сложившейся или выявленной группировкой функций в отдельные подсистемы.

Для сложных ИС строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.

Иерархия контекстных диаграмм определяет взаимодействие основных функциональных подсистем проектируемой ИС как между собой, так и с внешними входными и выходными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует ИС.

Разработка контекстных диаграмм решает проблему строгого определения функциональной структуры ИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке которых участвуют разные организации и коллективы разработчиков.

После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами).

Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи ДПД. Каждый процесс на ДПД, в свою очередь, может быть детализирован при помощи ДПД или миниспецификации. При детализации должны выполняться следующие правила: правило балансировки - означает, что при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь детализируемая подсистема или процесс на родительской диаграмме; правило нумерации - означает, что при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т.д.

Миниспецификация (описание логики процесса) должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

Миниспецификация является конечной вершиной иерархии ДПД. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком исходя из следующих критериев: наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока); возможности описания преобразования данных процессом в виде последовательного алгоритма; выполнения процессом единственной логической функции преобразования входной информации в выходную; возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20-30 строк).

При построении иерархии ДПД переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Структуры данных конструируются из элементов данных и могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне. Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (кг, см и т.п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.